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Abstract. Accurate wind farm flow predictions based on analytical wake models are crucial for wind farm design and lay-

out optimisation. In this regard, wake superposition methods play a key role and remain a substantial source of uncertainty.

Recently, new models based on mass and momentum conservation have been proposed in the literature. In the present work,

such methods are extended to the superposition of super-Gaussian type velocity deficit models, allowing the full wake velocity

deficit estimation and design of closely packed wind farms.5

1 Introduction

Wind farm design and layout optimisation rely on analytical flow models due to a large number of configurations to be evaluated

and the computational efficiency of such numerical methods. A typical wind farm flow solver consists of a combination of

several sub-models, including a minima a velocity deficit model, a wake-added-turbulence (WAT) model, and possibly a wake

deflection model, a blockage model, and a coupled wake/atmospheric-boundary-layer model. The velocity deficit and WAT10

models usually apply to a single wind turbine: wake superposition methods accumulate the wakes and estimate a wind farm

power production for given environmental conditions. Concerning the superposition of velocity deficits, the available methods

lacked theoretical justification, see Zong and Porté-Agel (2020), until the recent work of Zong and Porté-Agel (2020) and

Bastankhah et al. (2021). In these studies, analytical solutions for the velocity deficit superposition are proposed based on the

mass and momentum conservation principle. These superposition methods assume Gaussian-shaped velocity deficit profiles.15

In the present article, the approach of Bastankhah et al. (2021) is extended to super-Gaussian wake velocity deficit profiles.

Such models, proposed in Shapiro et al. (2019) and later refined in Blondel and Cathelain (2020), allow for the evaluation

of the velocity deficit over the full wake. On the contrary, the Gaussian-based approaches are limited to the far-wake. Apart

from preventing the appearance of unrepresentable numbers, this allows the study of closely packed wind farm layouts. Indeed,

some offshore wind farms such as Lillgrund exhibit small wind turbine inter-distances, down to 3.3 wind turbine diameters.20

Considering such super-Gaussian velocity profiles together with the Bastankhah et al. (2021) superposition method, an integral

has no analytical solution, and an approximation is proposed and compared with the numerical solution. It is also shown

in section 3 that the method proposed in Bay et al. (2022) leads to similar results in terms of centerline velocity deficit

and is suited for wind-farm power predictions. The new superposition method has more robust theoretical foundations than
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the traditionally used local-linear-sum (LLS) superposition technique (method C in Zong and Porté-Agel (2020)), and its25

applicability is demonstrated based on the large Horns-Rev wind farm.

2 Extension of the Bastankhah et al. (2021) model

2.1 Model derivation

In Bastankhah et al. (2021), the conservation of momentum deficit for multiple wakes takes the form:

∫

Ã

(
u0cnfn− (cnfn)2− 2cnfn

n−1∑

i=1

cifi

)
dÃ≈ T̃n

ρ
, (1)30

with cn the maximum velocity deficit of turbine n, i the index of the turbine upwind of turbine n, fn the self-similar function,

Ã = πr̃2 the rotor surface with r̃ = r/d0 and d0 the wind turbine diameter, T̃n the thrust force of the unit diameter rotor, u0

the undisturbed wind velocity, and ρ the fluid density. Based on comparisons to numerical results from a large-eddy simulation

(LES) solver, a modified form was proposed in Bastankhah et al. (2021): the factor two in the left-hand side of Eq. (1) is

dropped.35

Let us consider the original form, Eq. (1). Given a super-Gaussian shape function fn, a solution for cn is sought. Following

Blondel and Cathelain (2020), the shape function reads fi = exp
(
−r̃i

k/2σ̃i
2
)
, with k = k(x̃) the super-Gaussian order and i

or n the index of a wind turbine. In the following, we assume that the turbines are sorted from the most upwind to the most

downwind, and for two turbines i and n, we have i < n.

Here, the radius r̃i =
√

(y− yi)2 + (z− zi)2/d0 and the super-Gaussian characteristic width σ̃i are normalized by the wind40

turbine diameter d0, indicated by the tilde. The following integrals are defined in terms of the gamma function Γ:
∫

Ã

fndÃ =
π

k
Γ
(

2
k

)
22/k+1σ̃4/k

n ,
∫
Ã f2

ndÃ =
2π

k
Γ
(

2
k

)
σ̃

4/k
n , and

∫
Ã fnfidÃ = I. (2)

No analytical solution could be found for the last integral, denoted I. Inserting Eqs. (2) into Eq. (1) leads to:

u0cn
π

k
Γ
(

2
k

)
22/k+1σ̃4/k

n − c2
n

2π

k
Γ
(

2
k

)
σ̃4/k

n − 2cn

n−1∑

i

ciI ≈
T̃n

ρ
. (3)

Using the thrust coefficient CTn = 8T̃n/
(
πρd̃0

2 < Un−1 >2
(n,xn)

)
, the operator <>(n,xn) denoting the spatial averaging over45

the frontal projected area of rotor n at x = xn, as in Bastankhah et al. (2021), one obtains:

c2
n− cn22/k


u0− 2

n−1∑

i

ci

22/k

kI

2πΓ
(

2
k

)
σ̃

4/k
n


+

kCTn

16

< un−1 >2
(n,xn)

Γ
(

2
k

)
σ̃

4/k
n

≈ 0. (4)
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Let us introduce a modified integral J = kI/

(
22/kπΓ

(
2
k

)
σ̃

4/k
n

)
. After straightforward manipulations, and assuming

u0 = uh, i.e., a constant, shear-free inflow, the solution for cn reads:

cn

uh
=

(
1−

n−1∑

i=1

ci

uh
J
)



22/k−1−

√√√√√√√√
24/k−2−

kCTn

(
< un−1 >(n,xn)
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)2

16Γ
(

2
k

)
σ̃

4/k
n

(
1−∑n−1

i=1

ci

uh
J
)2




. (5)50

The modified form is obtained by using a modified J together with Eq. (5) and Imod = I/2:

Jmod =
nImod

22/kπΓ
(

2
k

)
σ̃

4/k
n

. (6)

2.2 Approximate solutions of the integral I

In a first approach, one may assume a Gaussian behaviour of the model to evaluate J , as done in Bay et al. (2022). One obtains,

see Bastankhah et al. (2021):55

Jmod
Gauss =

πσ̃2
i σ̃2

n

σ̃2
i + σ̃2

n

exp
(
− (ỹn− ỹi)2

2(σ̃2
n + σ̃2

i )

)
exp

(
− (z̃n− z̃i)2

2(σ̃2
n + σ̃2

i )

)
. (7)

Alternatively, one may first consider aligned turbines (ỹi− ỹn = 0, z̃i− z̃n = 0) and later correct the integral for the lateral

distance between the rotor using a function δ(ỹ, z̃). This function is identified from the Gaussian solution. A second approxi-

mation consists in considering an equivalent super-Gaussian order, keq = 1/2(ki + kn). Under these hypotheses, the integral

I takes the form:60

Imod
kEquiv =

πΓ(2/keq)22/keq+1σ̃
4/keq

i σ̃
4/keq
n

keq (σ̃2
i + σ̃2

n)2/keq
δ(ỹ, z̃), with δ(ỹ, z̃) = exp

(
− (ỹn− ỹi)keq

2(σ̃2
n + σ̃2

i )

)
exp

(
− (z̃n− z̃i)keq

2(σ̃2
n + σ̃2

i )

)
, (8)

and Eq. (6) is used to calculate Jmod
kEquiv . Another straightforward approach consists in tabulating the integral values (exclud-

ing the δ(ỹ, z̃) function) and linearly interpolating between the data, which is the one retained in practice. For a quantitative

comparison, the proposed analytical approximations of the integral J are compared to the numerical integration. An interval

of 0.2≤ σi,σn ≤ 2.5 is considered for the characteristic width, and several intervals 2≤ ki,kn < maxk are considered for65

the super-Gaussian order, with 2 < maxk ≤ 8. The bounding values are representative of the very near wake of a wind tur-

bine under laminar flow conditions and the very far wake (x̃ > 15d0) under highly turbulent conditions: the typical operating

range of a turbine in a wind farm is covered. Among the characteristic width and super-Gaussian order intervals, 15 values

are sampled. Regarding the maximum super-Gaussian order, 6 equally-spaced values are sampled. For each set of four in-

puts, and for a given maximum super-Gaussian order, the analytical approximations are evaluated, and the error is computed70

(error = (|JAnalytical| − |JNumerical|)/ |JNumerical|). The numerical evaluation is based on the scipy (Jones et al. (2001))

“integrate.quad" integration routine, and extends from 0 to 6 ·max(σi,σn). Then, for each maxk, the average and maximal er-

ror are computed and reported in Figure 1. From these results, the so-called kEquiv method seemingly outperforms the Gauss

method and should be preferred. However, it will be shown in Section 3 that the impact on the velocity deficit is limited.
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Figure 1. Mean (left) and maximal (right) relative error of the analytical integrals compared with the numerical evaluation of J as a function

of the maximal considered super-Gaussian order

3 Results75

Due to the poor performance of the super-Gaussian model noticed in Lanzilao and Meyers (2022), the model has first been

re-calibrated, focusing on the far wake, and enforcing k = 2 as a boundary condition. The procedure and notations follow the

work of Cathelain et al. (2020). Instead of using a root-finding algorithm for af , a polynomial approximation is used:

af =−8.2635C3
T + 8.5939C2

T − 8.9691CT + 10.7286 (9)

The proposed calibration is not meant to be universal but dedicated to the present study. Future work will be dedicated to80

a calibration that is reliable in both near and far-wake regions. Table 1 provides the list of the model coefficients used in

the present study. As noticed in Figure 2, the increase of the centerline velocity deficit in the very near-wake is not strong

Table 1. Coefficients of the super-Gaussian wake model

as bs cs af bf cf

0.28 0.01 0.1×CT +0.1 Eq. 9 1.68exp(−25.98TI)− 1.06 2.

enough, inducing a non-smooth transition between the vortex-cylinder-based induction zone and the wake. Furthermore, using

the momentum-conserving method, a velocity discontinuity appears at the rotor plane. This is due to the so-called modified

formulation. Using the un-modified formulation leads to very high near-wake velocity deficits or even unrepresentable numbers85

in the presented test case.
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3.1 Comparison against large-eddy simulations from Bastankhah et al. (2021)

For the model comparison, the numerical setup based on the aligned wind farm introduced in Bastankhah et al. (2021) is

reproduced. The wind farm flow model builds upon the super-Gaussian model as described in Blondel and Cathelain (2020),

using the calibration introduced in section 3. The WAT model proposed in Ishihara and Qian (2018) is employed, together with90

a so-called “maximum-value" WAT superposition, see Niayifar and Porté-Agel (2016). A correction factor of 1.25 is applied

on the maximum of added turbulence to match the results presented in Bastankhah et al. (2021). The rotor disks are discretized

based on 12× 12 polar grids. The rotor averaged velocity and turbulence intensity are estimated using a local rotor element

area ponderated average. A blockage correction based on the vortex cylinder flow model, see Branlard and Meyer Forsting

(2020), is used. The LLS method is compared to the present method, denoted MC (Momentum Conserving), with the two95

approximations for Jmod, as well as a direct numerical evaluation of the integral, denoted Jmod
Num.
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Figure 2. Centerline velocity deficit in the middle column of the farm, LES data scanned from Bastankhah et al. (2021)

Figure 2 shows that, compared with the LLS superposition method, the MC model predicts a lower velocity deficit in

both near and far wake regions. Moreover, the proposed analytical approximations of the integral Jmod are very close to

the numerical approximation in the presented test case. In the far wake regions, 3 diameters behind the wind turbines, the

Jmod
kEquiv and Jmod

Gauss approximations lead to superimposed velocity deficit, since the super-Gaussian order is close to 2. These100

observations validate the approach employed in Bay et al. (2022), despite the higher errors noticed in Figure 1. In practice, using

a tabulated version of the integral is a fast and convenient approach. However, it does not circumvent the approximation based

on the rotor distance function, δ(ỹ, z̃), since tabulating the complete integral results in large data files that are time-consuming

to load. The global agreement against the LES dataset is satisfying. In the first turbine wake, the hub effect prevents a proper

analysis of the results. For the second turbine, a good agreement is obtained with the LLS method, while the MC method105

underpredicts the velocity deficit. This behavior, as noted in Bastankhah et al. (2021), is a consequence of the application of

the modified momentum conservation law. For the following three turbines, a good agreement is obtained.
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3.2 Comparison against large-eddy simulations of the Horns-Rev wind farm from Porté-Agel et al. (2013)

The model predictions are also compared with large-eddy simulations of the Horns-Rev wind farm, as presented in Porté-Agel

et al. (2013). With a minimal inter-turbine distance of 7 diameters, this wind farm can not be considered as closely-packed.110

However, the availability of a large set of large-eddy simulation results makes it a good candidate for validation purposes.

Figure 3 compares the wind farm efficiency η (predicted power by theoretical power without wake effect) over a wide range

of wind directions θ. We use the LES as a reference to avoid the uncertainties of SCADA measurements, mainly due to the

wind direction changes during the 10 min averaging in the available data. The agreement between the analytical model and the
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Figure 3. Centerline velocity deficit in the middle column of the farm, LES data scanned from Bastankhah et al. (2021)

LES dataset is overall good. Differences between the momentum-conserving superposition method and the LLS approach are115

noticed for wind directions where the wake effects are strong, typically at θ ≈ {222o,270o,312o}. Around such directions, the

lower velocity deficits predicted by the MC approach lead to lower wake losses and better efficiency of the wind farm.

4 Conclusions

In this work, the momentum-conserving wake superposition method proposed in Bastankhah et al. (2021) was extended to

super-Gaussian-type of velocity deficit models. An integral could not be resolved analytically, and an approximation has been120

proposed. This approximation is closer to numerical evaluations of the integral that the Gaussian assumption used in Bay et al.

(2022). Comparisons against large-eddy simulations of wind farms show a satisfactory agreement, allowing the simulation of

large wind farms using the super-Gaussian wake model. Further studies will include an extensive validation of the resulting

wind farm flow model, including closely-packed wind farms.

Code and data availability. The numerical results based on the analytical models can be made available on demand.125
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